Ay 4 - \ . B 2

i Nl HE_ & = H & &
g R E——a e =
- R edd e H VO B S S
¥y = ——E e = —— .
N
T ——

Bertec Device Interface Library
for Java

Developer Documentation

Version 1.82
March 2014

Bertec Corporation Bertec Device Interface Library for Java

Copyright © 2009-2014 BERTEC Corporation. All rights reserved. Information in this
document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without express written permission of BERTEC Corporation or its licensees.

"Measurement Excellence", "Dominate Your Field", BERTEC Corporation, and their logos are trademarks of BERTEC
Corporation. Other trademarks are the property of their respective owners.

Printed in the United States of America.

Bertec’s authorized representative in the European Community regarding CE:

Bertec Limited

31 Merchiston Park
Edinburgh EH10 4 PW
Scotland, United Kingdom

qS

Bertec Corporation Bertec Device Interface Library for Java

SOFTWARE LICENSE AGREEMENT

This License Agreement is between you (“Customentl Bertec Corporation, the author of the BertecideDLL software and governs your use of the & th
dynamic link libraries, example source code, anclideentation (all of which are referred to hereirthes"Software").

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT CAREFUY BEFORE DOWNLOADING OR USING THE SOFTWARE. NO RBEINDS
ARE POSSIBLE. BY DOWNLOADING OR INSTALLING THE SORWVARE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEENT. IF YOU
DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENDO NOT DOWNLOAD OR INSTALL THE SOFTWARE.

« Bertec Corporation grants Customer a non-exctusght to install and use the Software for theregp purposes of connecting with Bertec Devices
for data gathering purposes. Other uses are ptedibi

« Customer may make archival copies of the Softypmorided Customer affixes to such copy all copytigonfidentiality, and proprietary notices
that appear on the original.

* The Customer may not resell the Software or ettser represent themselves as the owner of saidaeft

The binary redistributables are royalty free to dniginal Licensee and can be distributed with egaplons, provided that proper attribution is madehe
documentation and end user agreement. Binary rimlitbles include:

1. BertecDeviceDLL.dIl

2. BertecDeviceJava.jar

3. ftd2xx.dll
Note that the FTD2XX.DLL is a USB driver provideg Buture Technology Devices that enables communpitatith the Bertec Device.
The binary redistributables cannot be used by théndies to build applications or components.

Customer created binary redistributables from tb#v&re source code cannot be used by anyone dinguhe original license holder, to create a pobdbat
competes with Bertec Corporation products. Neitheroriginal nor altered source code may be distith.

EXCEPT AS EXPRESSLY AUTHORIZED ABOVE, CUSTOMER SHAINOT: COPY, IN WHOLE OR IN PART, SOFTWARE OR DOCURNTATION;
MODIFY THE SOFTWARE; REVERSE COMPILE OR REVERSE AS$BLE ALL OR ANY PORTION OF THE SOFTWARE; OR RENTLEASE,
DISTRIBUTE, SELL, MAKE AVAILABLE FOR DOWNLOAD, OR (REATE DERIVATIVE WORKS OF THE SOFTWARE OR SOURCE O8&.

Customer agrees that aspects of the licensed matemcluding the specific design and structureimafividual programs, constitute trade secrets @nd/
copyrighted material of Bertec Corporation. Custoamgrees not to disclose, provide, or otherwiseeremkailable such trade secrets or copyrighted mhfar
any form to any third party without the prior weitt consent of Bertec Corporation. Customer ageeésfilement reasonable security measures to pretett
trade secrets and copyrighted material. Title tiv&re and documentation shall remain solely witghtBc Corporation.

No Warranty

THE SOFTWARE IS BEING DELIVERED TO YOU "AS IS" ANBERTEC CORPORATION MAKES NO WARRANTY AS TO ITS USRELIABILITY
OR PERFORMANCE. BERTEC CORPORATION DOES NOT AND CRAT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTHN BY
USING THE SOFTWARE. BERTEC CORPORATION MAKES NO WRRNTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENODF THIRD
PARTY RIGHTS, TITLE, MERCHANTABILITY, OR FITNESS F& ANY PARTICULAR PURPOSE. YOU ASSUME ALL RISK ASSQSTED WITH
THE QUALITY, PERFORMANCE, INSTALLATION AND USE OF HE SOFTWARE INCLUDING, BUT NOT LIMITED TO, THE RISKE OF PROGRAM
ERRORS, DAMAGE TO EQUIPMENT, LOSS OF DATA OR SOFTWE PROGRAMS, OR UNAVAILABILITY OR INTERRUPTION OF BERATIONS.
YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APRRRIATENESS OF USE OF THE SOFTWARE AND ASSUME ALUSKS
ASSOCIATED WITH ITS USE.

Indemnification

You agree to indemnify and hold Bertec Corporatiparents, subsidiaries, affiliates, officers andplayees, harmless from any claim or demand, inolgdi
reasonable attorneys' fees, made by any third plartyto or arising out of your use of the Softwarethe infringement by you, of any intellectuabperty or
other right of any person or entity.

Limitation of Liability

IN NO EVENT WILL BERTEC CORPORATION BE LIABLE TO YO FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVECONSEQUENTIAL,
OR OTHER DAMAGES WHATSOEVER, OR ANY LOSS OF REVENUBATA, USE, OR PROFITS, EVEN IF BERTEC CORPORATIOMS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND RE&RDLESS OF WHETHER THE CLAIM IS BASED UPON ANY CONRACT, TORT
OR OTHER LEGAL OR EQUITABLE THEORY.

This License is effective until terminated. Custommay terminate this License at any time by destgwll copies of Software including any documeintat
This License will terminate immediately without io&t from Bertec Corporation if Customer fails tongay with any provision of this License. Upon
termination, Customer must destroy all copies dfvre.

Software, including technical data, is subject t8.Uexport control laws, including the U.S. Expadministration Act and its associated regulaticars] may be
subject to export or import regulations in otheumiies. Customer agrees to comply strictly with saich regulations and acknowledges that it has the
responsibility to obtain licenses to export, re-@xpor import Software.

This License shall be governed by and construeat@ordance with the laws of the State of Ohio, éthiBtates of America, as if performed wholly witkfire
state and without giving effect to the principldsconflict of law. If any portion hereof is found be void or unenforceable, the remaining provisiohthis
License shall remain in full force and effect. Thisense constitutes the entire License betweempales with respect to the use of the Software.

Should you have any questions concerning this Ages, please write to:
Bertec Corporation, 6171 Huntley Road, Suite Ju@dlus, Ohio 43229

Bertec Corporation Bertec Device Interface Library for Java

TABLE OF CONTENTS

Introduction

Definitions, Acronyms, and Abbreviations

Using the Library

Using polled data to pull the data yourself

Using events to get the data pushed to you

Error checking and handling

Data processing

Data format

Bertec Device Library Functions

BertecDevice

BertecDevice.dispose

BertecDevice.Status

BertecDevice.Start

BertecDevice.Stop

DataEventListener interface

BertecDevice.addDataEventListener

BerecDevice.removeDataEventListener

StatusEventListener interface

BertecDevice.addStatusEventListener

BertecDevice.removeStatusEventListener

DeviceSortEventListener interface

BertecDevice.addDeviceSortEventListener

BertecDevice.removeDeviceSortEventListener

BertecDevice.PollingBufferSize

BertecDevice.DataPoll

BertecDevice.ClearPollBuffer

BertecDevice.AveragingSize

BertecDevice.LowpassFilterSamples

BertecDevice.ZeroNow

BertecDevice.AutoZeroing

N N N

N

N N N N N N N

N

Bertec Corporation Bertec Device Interface Library for Java

BertecDevice.AutozeroState 2

BertecDevice.TransducerSerialNumber

BertecDevice.TransducerStatus

BertecDevice.AcquireRate

BertecDevice.UsbThreadPriority

BertecDevice.MayBeMissingSyncCable

N N N N N N

BertecDevice.ResetSyncCounters

BertecDevice.Transducers 2

BertecDevice.Transducerinfo class 2

BertecDevice.Transducerinfo.ChannelCount 2

BertecDevice.Transducerinfo.ChannelNames

BertecDevice.TransducerIinfo.SamplingFreq

N N N

BertecDevice.TransducerInfo.SerialNumber

BertecDevice.TransducerInfo.Status

BertecDevice.Transducerlnfo.Synchronized

BertecDevice.Transducerinfo.SynchMaster

BertecDevice.Transducerinfo.ZeroLevelNoiseValue

N N N N N

Data Events

BertecDevice.DataEventListener

BertecDevice.DataEvent
BertecDevice.DataEvent.channels

BertecDevice.DataEvent.samples

BertecDevice.DataEvent.data

N N NNDNN

Example

BertecDevice.StatusEventListener

N N

BertecDevice.StatusEvent

Troubleshooting

N N

Document Revision History

Bertec Corporation Bertec Device Interface Library for Java

INTRODUCTION

The Bertec Device Library for Java provides the end-user developer or data acquisition expert a common and consistent method
to gather data from Bertec equipment. Instead of directly communicating with the USB devices and implementing different
protocols and calibrations for each, the Bertec Device Library for Java manages all interaction with the USB devices, and
provides the calibrated captured data to your program or data analysis project. The Library also provides zeroing of the plate
data (either on-demand for tare loading, or automatic for low or no loading), sample averaging, and low-pass filtering.

The Library provides data results in either an event callback or a polled-data mode, depending on the needs and abilities of the
data acquisition application.

The Library exports its functionality as a typical Java class library or “jar” file, which can be used by any Java-compliant
development environment or data acquisition programs. As long as your development system or data acquisition software can
use Java libraries, then you should have no problems with using the Library.

Sample code is provided in the BertecExampleJAVA java file.
If you are doing development in a C or C++ environment, please refer to the BertecDevice.pdf file.

If you are doing development using .NET, please refer to the BertecDeviceNET.pdf file. This can also be used as a reference for
COM-based development.

If you have any developmental questions on using this library or SDK, please contact Bertec Corporation for support.

Bertec Corporation Bertec Device Interface Library for Java

DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

Balance plate: a Bertec device that measures pressure and movement that is optimized for balance diagnostics.

Force plate: a Bertec device that measures pressure and movement.

Center of Pressure (CoP): The point on the surface of the platform through which the ground reaction force acts. It corresponds
to the projection of the subject’s center of gravity on the platform surface when the subject is motionless.

Bertec Corporation Bertec Device Interface Library for Java

USING THE LIBRARY

After you have added a Reference to the BertecDeviceJAVA library, getting data from an attached device generally consists of
just a few steps:

1. Createthe Bert ecDevi ce object.

2. Either set the Bert ecDevi ce. Pol | i ngBuf f er Si ze value, or else bind your event handler to
Bert ecDevi ce. Dat aEvent Li st ner

CallBert ecDevi ce. St art

3
4. Pollusing Ber t ecDevi ce. Dat aPol |, or use the event hander.
5. CallBertecDevice. Stop

6

Dispose of the Ber t ecDevi ce object.

Step 1: Create the Ber t ecDevi ce object

Creating the Ber t ecDevi ce object will set up internal data in the Library and locate attached Bertec USB devices. It is the
first thing you will need to do to use the Bertec Device Library, and the object itself is how to use to communicate with the
Bertec Device. Note that creating multiple instances of this object is not supported.

Step 2: Either set the Bert ecDevi ce. Pol | i ngBuf f er Si ze value, or else bind your event handler to
Bert ecDevi ce. Dat aEvent Li st ener

Depending on how your application works, you will either want to poll for the data yourself (pulled by you) and process it, or
else use the faster event functionality (pushed to you). If polling, you will need to first tell the system how much internal buffer
memory it should allocate using the Pol | i ngBuf f er Si ze property. If using callbacks, you will need to register your event
handler with the Library via Ber t ecDevi ce. addDat aEvent Li st ener .

Step 3: Call Ber t ecDevi ce. Start

To actually gather data, you must call Ber t ecDevi ce. St art . Doing so will start the data gathering process, and will start
calling your event handler if you have registered it.

Step 4: Poll using Ber t ecDevi ce. Dat aPol | , or use the event hander.

If you're using the data polling method, you will need to repeatably call Ber t ecDevi ce. Dat aPol | to gather the data;
otherwise, the event handler will be used.

Step 5: Call Ber t ecDevi ce. St op

Once you have completed your data gathering call Ber t ecDevi ce. St op to end all of the USB data reads and end buffering
of the data. The Library still remains active and data gathering can be resumed by calling Ber t ecDevi ce. St art again.

Step 6: Dispose of the Ber t ecDevi ce object
Once you are completely done with the system, you will need to dispose of the Ber t ecDevi ce object to stop all USB devices

and release the device driver memory. Failing to do so could result in the Bertec devices continually running, and possible
memory leaks.

Bertec Corporation Bertec Device Interface Library for Java

USING POLLED DATA TO PULL THE DATA YOURSELF

In order to use polled data, you will need to inform the Library how much internal buffer space it will need to reserve for itself.
You do this using the Ber t ecDevi ce. Pol | i ngBuf f er Si ze property, setting the time in seconds you wish it to buffer
for. If you don't do this, then calling Ber t ecDevi ce. Dat aPol | will fail. Here is a very simplistic example with no error
handling:

Bert ecDevi ce. set Pol | i ngBuf f er Si ze(2. 750) ;
Bert ecDevice. Start();

Int[] channel sQut=new int[1];

doubl e[] your Dat aBuf f er =new doubl e[8000] ;
do

{
i nt sanples = BertecDevice. Dat aPol | (channel sQut, your Dat aBuffer);

processYourData(...);
} while (sanpl es>=0);
Bert ecDevi ce. Stop();

The Ber t ecDevi ce. Dat aPol | function will return either the number data items placed into the buffer, up to the size of
the buffer, or else an error code.

The error codes are defined in the Ber t ecDevi ceNET. Er r or Val ue enum collection. See the section on Error Codes for
more information.

USING EVENTS TO GET THE DATA PUSHED TO YOU

Events are a very fast way to get data from the attached devices. These events are handled in a separate thread from your
application's main thread — this must be taken into consideration when designing your application.

To use events, simply register your class's event handler with Ber t ecDevi ce. addDat aEvent Li st ener . You can
register multiple events handlers, and they will each get called in turn. Here is a very simplistic example without error checking:

cl ass myHandl er inplenents BertecDevi ceJava. Bert ecDevi ce. Dat aEvent Li st ener

{
public void dataEvent Recei ved(Dat aEvent event)
{
processYourData(...);
}
1

Bert ecDevi ce. addDat aEvent Li st ener (new nyHandl er ());
BertecDevice. Start();

..your main program runs...

Ber t ecDevi ce. Stop();

Bertec Corporation Bertec Device Interface Library for Java

ERROR CHECKING AND HANDLING

When using the data polling, you will need to check the return value from Ber t ecDevi ce. Dat aPol | . If the value is
greater than zero, then there is valid data in the buffer object that you passed to Ber t ecDevi ce. Dat aPol | . If the return
value is zero, there is no data on the wire to process — this is not considered an error unless it happens several times in a row,
and then the Library determines that the device has been disconnected. A value less than zero will indicate an error condition.
The error codes are defined in the Ber t ecDevi ceNET. Er r or Val ue enum collection. See the section on Error Codes for
more information.

When using the event handler, errors are given using the Dat aEvent . sanpl es parameter. If this value is less than zero, it
indicates an error condition. Again, the error codes are defined in the Ber t ecDevi ceNET. Er r or Val ue enum collection.
See the section on Error Codes for more information.

Status errors are also sent using the Bert ecDevi ce. St at usEvent Li st ener event handler. These events are sent
whenever the status of the Library changes, either to an error condition or when cleared.

Generally speaking, the Bertec Device Library will automatically handle most error conditions that you would otherwise have to
design for. If the user unplugs a device, and then reconnects it, the Library will handle this and restart the device. However, the
system will not attempt to locate freshly attached devices that are plugged in while the Library is in use. If the Bertec device is
turned off, or disconnected from the USB converter box, the Library will notice the lack of incoming data and attempt to restart
the device once it is reconnected.

DATA PROCESSING

Since data can flow into the computer in a very rapid rate, it is critical that your program handle it as promptly as possible —
buffering it in a large pre-allocated memory block is preferred. Should data not be read fast enough, it will start to be lost, and
you will get notifications either through the return code from Bert ecDevi ce. Dat aPol | or the sanpl es error value in
the callback.

DATA FORMAT

The buffered data that is presented via callbacks or data polling is an array of double values, already calibrated for each device,
grouped in sets of samples. What each value means is specific to the channel of that device. Each sample contains all channels
of all attached transducers, starting from Ber t ecDevi ce. Tr ansducer sl nf o[0] and going up to the value in

Bert ecDevi ce. get Tr ansducer Count ().

Each sample is therefor arranged like this:

sample 0: trOch0,trOch1,trOch2,trOch3, trichO,trichl
sample 1: trOch0,trOch1,trOch2,trOch3, trlchO,trichl
etc.

Both the event handler and data poll return to your code the total number of channels for all transducers. In the above samples,
this value would be 6.

10

Bertec Corporation Bertec Device Interface Library for Java

BERTEC DEVICE LIBRARY FUNCTIONS

The Bertec Device Library is in the Ber t ecDevi ceJava namespace. This namespace includes the following:

Ber t ecDevi ceJava. Bert ecDevi ce : this is the class you will need to instantiate in order to gain access to the Bertec
Devices. When done with this object, you will need to dispose of it.

Bert ecDevi ceJava. Dat aEvent Li st ener : this is the data event handler interface for getting data from the system.
Use this to put the call to your own event handler into the Ber t ecDevi ce. Dat aEvent Li st ener handler.

Ber t ecDevi ceJava. St at usEvent Handl er : this is the status change event handler interface. Use this to put the call
to your own event handler into the Ber t ecDevi ce. St at usEvent Li st ener handler.

Bert ecDevi ceJava. Bert ecDevi ce. Error Val ue : enum list of error values.
Bert ecDevi ceJava. Bert ecDevi ce. Aut oZer oSt at eVal ue : enum list of auto zeroing states.

Ber t ecDevi ceJava. Bert ecDevi ce. Transducer | nf o : information about each transducer, including the channel
names. Retrieved using the get Tr ansducer s() function.

BERTECDEVICE

berechj ect = new BertecDevice()

Creating the Ber t ecDevi ce object initializes the library and does initial communication with the USB devices. You must first
create the object before you can use the Bertec Devices. Creating the object does not start the data gathering process — you
must call Ber t ecDevi ce. St art () to do so. You should only create one instance of this object. Creating multiple instances
will cause errors with the USB device. When you are done with the object, destroy the object or call di spose() onitto
release the memory.

BERTECDEVICE.DISPOSE
voi d BertecDevi ce. di spose()

Calling the Ber t ecDevi ce. di spose will shut down all devices, unregister all events, and stop data acquisition. You can
either do this explicitly by calling this method directly, wrapper your code block with a try-finally construct, or allow the Java
garbage collection to take care of it. Failing to call this when you have completed data acquisition will leave the devices running
and possibly introduce memory leaks.

11

Bertec Corporation Bertec Device Interface Library for Java

BERTECDEVICE.STATUS
i nt BertecDevice. get Status()

This function returns the current status value of the system. Use the Er r or Val ue enums to determine what the status is.

BERTECDEVICE.START
int BertecDevice.Start()

This function starts the data gathering process, invoking the events if they are registered, and buffering incoming data as
needed. The function will return a zero value if the process is started correctly, otherwise it will return an
Er r or Val ue. ERROR_| NVALI DHANDLE return code.

BERTECDEVICE.STOP
i nt BertecDevice. Stop()

This function stops the data gathering process. Events will no longer be called (but remained registered), and calling the
Dat aPol | function will return an error. The function will return a zero value for success; otherwise it will return an
Er r or Val ue. ERROR_| NVALI DHANDLE return code.

DATAEVENTLISTENER INTERFACE
BERTECDEVICE.ADDDATAEVENTLISTENER
BERECDEVICE.REMOVEDATAEVENTLISTENER

public static interface BertecDevice. Dat aEvent Li st ener

voi d BertecDevice. Dat aEvent Li st ener . dat aEvent Recei ved(Dat aEvent event)
voi d addDat aEvent Li st ener (Bert ecDevi ce. Dat aEvent Li st ener 1i sten)

voi d renoveDat aEvent Li st ener (Bert ecDevi ce. Dat aEvent Li stener |isten)

To use the data event functionality in the system, you will need to register your event handler with

Bert ecDevi ce. addDat aEvent Li st ener (your Handl er Cl ass) . The system can support multiple data event
handlers. To stop using the event without stopping data acquisition, call

Bert ecDevi ce. renoveDat aEvent Li st ener (your Handl er O ass) . Disposing of the Ber t ecDevi ce object
will automatically unregister all callbacks.

Your event handler function should derive from the Ber t ecDevi ce. Dat aEvent Li st ener interface, and implement the
dat aEvent Recei ved(Dat aEvent event) function.

12

Bertec Corporation Bertec Device Interface Library for Java

Events will be fired each time there is data left in the internal buffer to be processed — each event handler will be called with the
same data values. The data collection is an array of doubles, and can be iterated like any other collection. Do not delete, free, or
otherwise modify this data buffer.

Since data gathering is time-critical, it is important that you process the data as fast a possible and return.
You should register your events before calling Ber t ecDevi ce. St art () in order to insure that no data is lost.

See the section on Data Events for information about the format and type of the data block.

STATUSEVENTLISTENER INTERFACE
BERTECDEVICE.ADDSTATUSEVENTLISTENER
BERTECDEVICE.REMOVESTATUSEVENTLISTENER

public static interface BertecDevice. StatusEventLi st ener

voi d BertecDevice. St at usEvent Li st ener. st at usEvent Recei ved(St at usEvent event)
voi d addSt at usEvent Li st ener (Bert ecDevi ce. St at usEvent Li st ener 1i sten)

voi d renoveSt at usEvent Li st ener (Bert ecDevi ce. St at usEvent Li st ener 1i sten)

To use the status callback functionality in the system, you will need to register your callback function with

Bert ecDevi ce. addSt at usEvent Li st ener (your Handl er Cl ass) . The system can support multiple events
handlers. To stop using the event, call Ber t ecDevi ce. r enoveSt at usEvent Li st ener (your Handl er ass) .
Disposing of the Ber t ecDevi ce object will automatically unregister all callbacks.

Your event handler function should derive from the St at usEvent Li st ener interface, and implement the
st at usEvent Recei ved(St at usEvent event) function.

Events will be fired each time there is a change in the status of code of the Library — they will not be fired unless the
St at usEvent . st at us value changes from N to X. The St at US value passed to the callback is the same as in the
Bert ecDevi ce. St at us value, and is provided only as a convenience factor.

Since data gathering is time-critical, and this event is made in the context of the gathering process, it is important that you
process the status change as fast a possible and return.

13

Bertec Corporation Bertec Device Interface Library for Java

DEVICESORTEVENTLISTENER INTERFACE
BERTECDEVICE.ADDDEVICESORTEVENTLISTENER
BERTECDEVICE.REMOVEDEVICESORTEVENTLISTENER

public static interface BertecDevice. DeviceSort Event Li st ener

voi d BertecDevice. DeviceSort Event Li st ener. devi ceSort Event Recei ved(Devi ceSor t Event
event)

voi d addDevi ceSort Event Li st ener (Bert ecDevi ce. Devi ceSort Event Li stener |isten)
voi d renoveDevi ceSort Event Li st ener (Bert ecDevi ce. Devi ceSort Event Li stener |isten)

To use the plate (or device) sort order callback functionality in the system, you will need to register your callback function with
Bert ecDevi ce. addDevi ceSor t Event Li st ener (your Handl er Cl ass) . The system can support multiple
callbacks. To stop using the event, call Ber t ecDevi ce. renoveDevi ceSor t Event Li st ener

(your Handl er O ass) . Disposing of the Ber t ecDevi ce object will automatically unregister all callbacks.

Your event handler function should derive from the Devi ceSor t Event Li st ener interface, and implement the
devi ceSort Event Recei ved(Devi ceSort Event event) function.

Events will be fired each time the library reloads the list of devices attached to the computer.

The Devi ceSort Event . i nf os array is a list of devices discovered, and the Devi ceSort Event . or der Arr ay
should be manipulated by your event handler to re-order which device is #1, which is #2, etc. By default, the USB hardware
orders the devices based on internal identifiers, which may or may not be order you wish to have, and the orderArray is filled in
with [0,1,2,3...] . By examining the infos array (typically the serial# of the device), and changing the index values in orderArray,
you can tell the library to move a device in front of others; the ordering of devices is reflected in the outgoing data stream. This
allows your project to always have a consistent ordering of devices without the overhead of dealing with the USB system
ordering.

BERTECDEVICE.POLLINGBUFFERSIZE

doubl e BertecDevi ce. get Pol |i ngBuf ferSi ze()
voi d BertecDevice. setPol | ingBufferSize(double tine)

To use data polling instead of events, you must first set up the internal buffer and tell the system how much data you wish to
buffer. The system will take the value (expressed in seconds — thus 1 second is 1.00) and create an internal buffer larger enough
to at least hold that amount for all channels. If you do not do this, then the data poll will return an error. You should set this
before calling Bert ecDevi ce. Start () andBert ecDevi ce. Dat aPol | (). The allocated memory is released when
the Ber t ecDevi ce is disposed of.

Note that setting this again will re-allocate the internal buffer, resulting in a loss of data remaining in the internal buffer.

14

Bertec Corporation Bertec Device Interface Library for Java

BERTECDEVICE.DATAPOLL
int BertecDevice.DataPoll (int[] channel sCQut, doubl e[] dataQut)

Instead of using the event handlers, you can use the Ber t ecDevi ce. Dat aPol | function to periodically pull the data
from the internal buffer set up with Ber t ecDevi ce. Pol | i ngBuf f er Si ze. You must first have a buffer set up large
enough to hold at least once sample set of data, which is the sum of all the values of Tr ansducer sl nf o. Channel Count
inthe Tr ansducer sLi st collection. This sum value is returned to you in the channel sQut variable that you provide to
the function.

You must allocate both the channel sQut and dat aQut array before calling this function. channel sQut should be a
single int array value, like so:

int[] channel sQut = new int[1];

dat aQut should be a buffer large enough to capture a reasonable amount of data per call; small buffers will result in more
round-trip calls, while a large buffer may not get filled to the maximum (so in general, bigger is better).

doubl e[] dataQut = new doubl e[8000];

You must call this function often enough, to keep up with the data being gathered and buffered by the system. Failing to do so
will result in an error condition and loss of data.

The function returns a positive number for how many sample “rows” are returned — each “row” is channel sQut wide. Thus
if the function returns 20, and you have 5 channels, then there are 100 data samples in the buffer. See the section on Returned
Data for information about the format and type of the data block.

If the function returns a negative number, it will be one of the following Er r or Val ue values:

Error Value Means

POLL_NOUSERBUFFER -1 The buffer size passed was too small to hold one sample. Increase the
size of the buffer.

POLL_NOPOLLBUFFER -2 There are no internal buffers allocated — you need to set
Pol I i ngBuf f er Si ze first.

POLL_CHECKSTATUS -3 A status change has occurred — either a device has been unplugged or
some other error occurred. You will need to check
Bert ecDevi ce. St at us.

POLL_OVERFLOW -4 The polling wasn't performed for long enough, and data has been lost.

POLL__NODEVI CES -5 There are apparently no devices attached. Attach a device.

15

Bertec Corporation Bertec Device Interface Library for Java

POLL_NOTSTARTED -6 You have not called Ber t ecDevi ce. Start vet.

DATA _SYNCHRON ZI NG -7 Synchronizing, data not available yet (this value is in
Bert ecDevi ce. St at us during callbacks, as the return code when
polling)

SYNCHRONI ZE_LOST -8 If multiple plates are connected with the Bertec Sync option, the plates

have lost sync with each other - check the sync cable.

SEQUENCE_M SSED -9 One or more plates have missing data sequence - data may be invalid
SEQUENCE _REGAI NED -10 The plates have regained their data sequence

NO DATA RECEI VED -11 No data is being received from the devices, check the cables

DEVI CE_HAS FAULTED -12 The device has failed in some manner. Power off the device, check all

connections, power back on

POLL_DEVI CES_READY -50 There are plates to be read

AUTOZERCSTATE_ WORKI NG -51 Currently finding the zero values

AUTOZERCSTATE ZERCFOUND | -52 The zero leveling value was found

BERTECDEVICE.CLEARPOLLBUFFER
i nt BertecDevice.d earPoll Buffer()

This will clear all of the data that is currently in the polling buffer. This is only useful if using Dat aPol | and not using event
handlers.

BERTECDEVICE.AVERAGINGSIZE

i nt BertecDevice. get Aver agi ngSi ze()

voi d BertecDevice. set Aver agi ngSi ze(int si ze)

16

Bertec Corporation Bertec Device Interface Library for Java

This controls the number of samples from the devices, reducing the apparent data rate and result data by the value of
Aver agi ngSi ze (ex: a value of 5 will cause 5 times less data to come out). The Aver agi ngSi ze value should be >=2 in
order for averaging to be enabled. Setting Aver agi ngSi ze to 1 or less will turn off averaging (the default).

BERTECDEVICE.LOWPASSFILTERSAMPLES
i nt BertecDevice. get LowpassFi |t er Sanpl es()
voi d BertecDevice. set LowpassFil t er Sanpl es(int sanpl es)

This controls setting a running average of the previous set value, making the input data stream to appear smoother. The value
should be >= 2 in order to turn the filter on. This does not affect the total number of samples gathered.

BERTECDEVICE.ZERONOW
i nt BertecDevice.Zer oNow)

By default, the data from the devices is not zeroed out. Calling the Zer oNow function with any load on the device will sample

the data for a fixed number of seconds, and then use the loaded values as the zero baseline (this is sometimes called “tare” for
simpler load plates). Calling this after calling St ar t will cause your data stream to rapidly change values as the new zero point
is taken. This can be used in conjunction with the Enabl eAut ozer o property.

BERTECDEVICE.AUTOZEROING
i nt BertecDevice. get Aut ozer oi ng()
voi d BertecDevice. set Autozeroing(int flag)

The Library has the ability to automatically re-zero the plate devices when it detects a low- or no-load condition (less than 40
newtons for at least 3.5 seconds). Setting Aut 0Zer 0i ng to a non-zero value will cause the Library to monitor the data stream
and continually reset the zero baseline values. Set this to a zero value to turn it off. This functionality will not interrupt your data
stream, but you will get a sudden shift in values as the Library applies the zero baseline initially.

BERTECDEVICE.AUTOZEROSTATE
i nt BertecDevice. get AutozeroState()

This function returns the current state of the autozero system. Your program will need to poll this on occasion to find the
current state — there is no event for when it changes.

The function returns one of the following Aut oZer oSt at eVal ue values:

17

Bertec Corporation Bertec Device Interface Library for Java

State Value | Means

NOTENABLED 0 Autozeroing is currently not enabled.

WORKI NG 1 Autozero is currently looking for a sample to zero against.

ZERCOFOUND 2 The zero level has been found. Note that once this value is returned, Aut ozer oSt at e will
always return it until you disable Autozeroing.

BERTECDEVICE.TRANSDUCERSERIALNUMBER

String BertecDevi ce. get Transducer Seri al Nunber (i nt i ndex)

This returns a given transducer's serial number. This is a convenience property that can be used instead of accessing the
Tr ansducer | nf o object.

BERTECDEVICE.TRANSDUCERSTATUS

i nt BertecDevice. get Transducer Status(int index)

This returns a given transducer's current status. This is a convenience property that can be used instead of accessing the
Tr ansducer | nf o object. This value is always up-to-date, whereas the Tr ansducer | nf o object status value may not be.

BERTECDEVICE.ACQUIRERATE

i nt BertecDevice. get AcquireRate()
voi d BertecDevice. set AcquireRate(int rate)

The Library defaults to a data push rate of approximately 5Hz. On faster equipment that might be used in a near-realtime
environment, you can change this up to a rate of 20Hz (Acqui r eRat e equals 1).

Note that this directly effects how often the data callback is given data, and how much data it is given. It does not effect how
the device is read, only how much is pushed to your application in the callback. This has no effect on the Dat aPol | function.
For example, at the default Acqui r eRat e of 10, the data callback is called with about 240 samples every 210ms. Changing
this value to 2 causes the callback to be called with 52 samples every 47ms, and a value of 1 is equal to about 30 samples every
31ms. At the other extreme, an Acqui r eRat e of 50 equates to 1025 samples at around 1016ms.

The number of samples and effective values of ACqQui r eRat e are dependent upon both the Bertec Device and the Windows

platform you are using.

18

Bertec Corporation Bertec Device Interface Library for Java

There are very few conditions where you will need to change the rate.

BERTECDEVICE.USBTHREADPRIORITY
voi d BertecDevice. set UsbThreadPriority(int pri)

This function allows your code to change the priority of the internal USB reading thread. Typically, this is not something you will
need to do unless you feel that the USB interface needs more or less of the thread scheduling that Windows performs. The
priority value can range from -15 (lowest possible) to 15 (highest possible — this will more than likely prevent your GUI from
running). The default system scheduling of the USB reading thread should be suitable for most applications.

BERTECDEVICE.MAYBEMISSINGSYNCCABLE
i nt BertecDevice. get MayBeM ssi ngSyncCabl e()

If there are multiple devices, this will attempt to detect if the sync cable is missing, disconnected, or loose. Will return a value of
1if the cable appears to be missing, or returns 0 if the sync cable appears to be good. Only valid when used with multiple
devices connected through 650x amps with a sync cable connection.

BERTECDEVICE.RESETSYNCCOUNTERS
i nt BertecDevice. Reset SyncCount ers()

If there are multiple devices, this function will reset the internal counters that account for sync offset and drifts. This is an
advanced function that is typically not used and does nothing if there is only a single device connected. Returns 0 for success.

BERTECDEVICE.TRANSDUCERS
Transducer | nfo[] BertecDevice. get Transducers()

This function returns an array of the Transducers that are currently connected to the system. Each entry into the array contains
information about each Transducer or Force Plate, such as channel names, serial #, and etc. See the section on the
Transducerlnfo class for more information.

19

Bertec Corporation Bertec Device Interface Library for Java

BERTECDEVICE.TRANSDUCERINFO CLASS

The Tr ansducer | nf o class contains information about each Transducer or Force Plate connected to the system. You get
the collection of Transducers by using the Ber t ecDevi ce. get Transducer s() function.

BERTECDEVICE.TRANSDUCERINFO.CHANNELCOUNT
i nt BertecDevice. Transducer | nf o. Channel Count

Contains how many output channels there are. For the name of each channel and the order they appear in the output stream,
see the Channel Nanes property.

BERTECDEVICE.TRANSDUCERINFO.CHANNELNAMES
String[] BertecDevice. Transducer | nf o. Channel Nanes

Contains the names of each channel that the Transducer is delivering data on. The order of the names is the order of the data in
the data stream that you get via either callbacks or Dat aPol | .

BERTECDEVICE.TRANSDUCERINFO.SAMPLINGFREQ
i nt BertecDevice. Transducer | nf o. Sanpl i ngFr eq

The sampling frequency of the transducer, in Hertz. Typically, this is a value of 1000.

BERTECDEVICE.TRANSDUCERINFO.SERIALNUMBER
String BertecDevi ce. Transducer | nfo. Seri al Nunber

The serial number of the device.

BERTECDEVICE.TRANSDUCERINFO.STATUS
i nt BertecDevice. Transducer | nf o. St at us

The last-known status of the device. This value is a “snapshot” in time, and for more up-to-date values, you should use the
Bert ecDevi ce. get Transducer St at us(i nt devi ceNunrber) function.

BERTECDEVICE.TRANSDUCERINFO.SYNCHRONIZED

bool ean BertecDevi ce. Transducer | nfo. Synchroni zed

20

Bertec Corporation Bertec Device Interface Library for Java

If set, then the device is part of a sync group. This requires the proper Bertec amplifiers connected together using a specific sync
cable. See also the Tr ansducer | nf 0. SyncMast er property, and the Ber t ecDevi ce. get Syncroni zed() and
Bert ecDevi ce. get Current SyncDri ft () functions.

BERTECDEVICE.TRANSDUCERINFO.SYNCHMASTER

bool ean BertecDevi ce. Transducer | nf 0. SynchMast er

If set, then the device is the master control of the sync group. This requires the proper Bertec amplifiers connected together
using a specific sync cable. See also the Tr ansducer | nf 0. Synchr oni zed property, and the
Bert ecDevi ce. get Syncroni zed() and Bert ecDevi ce. get Current SyncDrift () functions.

BERTECDEVICE.TRANSDUCERINFO.ZEROLEVELNOISEVALUE
doubl e BertecDevi ce. Transducer | nf o. Zer oLevel Noi seVal ue(i nt channel | ndex)

Returns the zero level noise value for a device and channel. Prior to accessing this property, either Zer oNow() must have
been called, or Enabl eAut ozer o must have been set. The value returned is a computed value that can be used for advanced
filtering. Valid values are always zero or positive; negative values indicate either no zeroing or some other error.

DATA EVENTS

The Device Library supports event callbacks — one for handling data collected by the system, and the other for status events.
Using these callback events for data collection is the fastest way to gather data, but since these events operates in a multi-
threaded environment, it can introduce some programming considerations for you. You should be aware of multithreading in
your development environment before using these functions.

To use the data events, simply derive a class from Ber t ecDevi ce. Dat aEvent Li st ener or
Bert ecDevi ce. St at usEvent Li st ener, depending on if you want data from the system, or wish to handle status
event changes.

BERTECDEVICE.DATAEVENTLISTENER

To use the Data Events, implement a class based on Ber t ecDevi ce. Dat aEvent Li st ener with a method function
called dat aEvent Recei ved(Dat aEvent event), like so:

class myHandl er inplenments BertecDevi ceJava. Bert ecDevi ce. Dat aEvent Li st ener

{
public void dataEvent Recei ved(Dat aEvent event)
{
processYourData(...);
}
i

21

Bertec Corporation Bertec Device Interface Library for Java

The dat aEvent Reci eved function will get a Bert ecDevi ce. Dat aEvent event object each time it is called. Any
errors are given in the Dat aEvent . sanpl es value.

BERTECDEVICE.DATAEVENT

This event object contains the force place or other device data. Each time your dat aEvent Recei ved implementation is
called, this object will be populated with three data values:

BERTECDEVICE.DATAEVENT.CHANNELS

This is the number of channels that are present in the event. This will always be the total number of channels for all devices
connected. Thus if you have a single force plate with six channels, this value will be 6; but if you have two devices, one with four
channels and the other with six, then this value will be 10. You use this value to iterate through the dat a array.

BERTECDEVICE.DATAEVENT.SAMPLES

This is the number of samples of the channels available in data. If you think of the channel s value as the number of columns,
then the samples is the number of rows. The total number of values available in the dat a array will always be channels -
samples.

If this value is less than zero, it indicates that there was some error while receiving the data. Please consult the list of possible
error values in the Dat aPol | section.

BERTECDEVICE.DATAEVENT.DATA

This is an array of doubles that contain the received data from the force device. You can iterate through this array to capture or
otherwise process the data.

EXAMPLE
public void dataEvent Recei ved(Dat aEvent event)
{

int index = 0;
for (int row = 0; row < event.sanples; ++row)

{
for (int col = 0; col < event.channels; ++col)
{
Do_Sonet hi ng(event . dat a[i ndex]) ;
++i ndex;
}
}

Here your Do_Something function would perhaps record the data values to a file.

22

Bertec Corporation Bertec Device Interface Library for Java

BERTECDEVICE.STATUSEVENTLISTENER

To use the Status Events, implement a class based on Bert ecDevi ce. St at usEvent Li st ener with a method function
called st at usEvent Recei ved(St at usEvent event), like so:

cl ass nmyHandl er inplenents BertecDevi ceJava. Bert ecDevi ce. St at usEvent Li st ener

{
public void statusEvent Recei ved(St at usEvent event)
{
processTheStatus(...);
}
i

The st at usEvent Reci eved function will get a Bert ecDevi ce. St at usEvent event object each time it is called.

BERTECDEVICE.STATUSEVENT

The St at usEvent object is just a container for a single data value, St at us. This St at us value is the same as what is
returned by the Ber t ecDevi ce. get St at us() function call — see the table of status codes under the get St at us
function for what these values are.

You will only get this event when and if the status event changes.

23

Bertec Corporation Bertec Device Interface Library for Java

TROUBLESHOOTING

If your application will not launch, make sure that both the BertecDeviceDLL.dll and ftd2xx.dll are in the same folder as your
application, and that the BertecDeviceJAVA.jar has been registered with your development system or install deployment
solution.

For any other issues, please contact Bertec Technical Support.

24

Bertec Corporation Bertec Device Interface Library for Java

DOCUMENT REVISION HISTORY

Date Revision Description Author
01/15/2009 1.00 Initial Revision Todd Wilson
03/28/2012 1.80 Updated with current version Todd Wilson
06/30/2012 1.81 Removed Sync Drift function; added Sync Cable Todd Wilson

and Sync Counter Reset functions and additional
status codes.

3/24/2014 1.82 Added sort ordering, usb thread priority Todd Wilson
functions, corrected typographical errors

25

