

Bertec Device Interface Library
for .NET
Developer Documentation

Version 1.82
March 2014

Bertec Corporation Bertec Device Interface Library for .NET

ii

Copyright © 2009-2014 BERTEC Corporation. All rights reserved. Information in this
document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without express written permission of BERTEC Corporation or its licensees.

"Measurement Excellence", "Dominate Your Field", BERTEC Corporation, and their logos are trademarks of BERTEC
Corporation. Other trademarks are the property of their respective owners.

Printed in the United States of America.

Bertec’s authorized representative in the European Community regarding CE:
Bertec Limited
31 Merchiston Park
Edinburgh EH10 4 PW
Scotland, United Kingdom

Bertec Corporation Bertec Device Interface Library for .NET

iii

SOFTWARE LICENSE AGREEMENT

This License Agreement is between you (“Customer”) and Bertec Corporation, the author of the Bertec Device DLL software and governs your use of the of the
dynamic link libraries, example source code, and documentation (all of which are referred to herein as the "Software").

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT CAREFULLY BEFORE DOWNLOADING OR USING THE SOFTWARE. NO REFUNDS
ARE POSSIBLE. BY DOWNLOADING OR INSTALLING THE SOFTWARE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT. IF YOU
DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD OR INSTALL THE SOFTWARE.

• Bertec Corporation grants Customer a non-exclusive right to install and use the Software for the express purposes of connecting with Bertec Devices
for data gathering purposes. Other uses are prohibited.

• Customer may make archival copies of the Software provided Customer affixes to such copy all copyright, confidentiality, and proprietary notices
that appear on the original.

• The Customer may not resell the Software or otherwise represent themselves as the owner of said software.

The binary redistributables are royalty free to the original Licensee and can be distributed with applications, provided that proper attribution is made in the
documentation and end user agreement. Binary redistributables include:

1. BertecDeviceDLL.dll

2. BertecDeviceNET.dll

3. ftd2xx.dll

Note that the FTD2XX.DLL is a USB driver provided by Future Technology Devices that enables communication with the Bertec Device.

The binary redistributables cannot be used by third parties to build applications or components.

Customer created binary redistributables from the Software source code cannot be used by anyone, including the original license holder, to create a product that
competes with Bertec Corporation products. Neither the original nor altered source code may be distributed.

EXCEPT AS EXPRESSLY AUTHORIZED ABOVE, CUSTOMER SHALL NOT: COPY, IN WHOLE OR IN PART, SOFTWARE OR DOCUMENTATION;
MODIFY THE SOFTWARE; REVERSE COMPILE OR REVERSE ASSEMBLE ALL OR ANY PORTION OF THE SOFTWARE; OR RENT, LEASE,
DISTRIBUTE, SELL, MAKE AVAILABLE FOR DOWNLOAD, OR CREATE DERIVATIVE WORKS OF THE SOFTWARE OR SOURCE CODE.

Customer agrees that aspects of the licensed materials, including the specific design and structure of individual programs, constitute trade secrets and/or
copyrighted material of Bertec Corporation. Customer agrees not to disclose, provide, or otherwise make available such trade secrets or copyrighted material in
any form to any third party without the prior written consent of Bertec Corporation. Customer agrees to implement reasonable security measures to protect such
trade secrets and copyrighted material. Title to Software and documentation shall remain solely with Bertec Corporation.

No Warranty

THE SOFTWARE IS BEING DELIVERED TO YOU "AS IS" AND BERTEC CORPORATION MAKES NO WARRANTY AS TO ITS USE, RELIABILITY
OR PERFORMANCE. BERTEC CORPORATION DOES NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THE SOFTWARE. BERTEC CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF THIRD
PARTY RIGHTS, TITLE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. YOU ASSUME ALL RISK ASSOCIATED WITH
THE QUALITY, PERFORMANCE, INSTALLATION AND USE OF THE SOFTWARE INCLUDING, BUT NOT LIMITED TO, THE RISKS OF PROGRAM
ERRORS, DAMAGE TO EQUIPMENT, LOSS OF DATA OR SOFTWARE PROGRAMS, OR UNAVAILABILITY OR INTERRUPTION OF OPERATIONS.
YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USE OF THE SOFTWARE AND ASSUME ALL RISKS
ASSOCIATED WITH ITS USE.

Indemnification

You agree to indemnify and hold Bertec Corporation, parents, subsidiaries, affiliates, officers and employees, harmless from any claim or demand, including
reasonable attorneys' fees, made by any third party due to or arising out of your use of the Software, or the infringement by you, of any intellectual property or
other right of any person or entity.

Limitation of Liability

IN NO EVENT WILL BERTEC CORPORATION BE LIABLE TO YOU FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, CONSEQUENTIAL,
OR OTHER DAMAGES WHATSOEVER, OR ANY LOSS OF REVENUE, DATA, USE, OR PROFITS, EVEN IF BERTEC CORPORATION HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND REGARDLESS OF WHETHER THE CLAIM IS BASED UPON ANY CONTRACT, TORT
OR OTHER LEGAL OR EQUITABLE THEORY.

This License is effective until terminated. Customer may terminate this License at any time by destroying all copies of Software including any documentation.
This License will terminate immediately without notice from Bertec Corporation if Customer fails to comply with any provision of this License. Upon
termination, Customer must destroy all copies of Software.

Software, including technical data, is subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations, and may be
subject to export or import regulations in other countries. Customer agrees to comply strictly with all such regulations and acknowledges that it has the
responsibility to obtain licenses to export, re-export, or import Software.

This License shall be governed by and construed in accordance with the laws of the State of Ohio, United States of America, as if performed wholly within the
state and without giving effect to the principles of conflict of law. If any portion hereof is found to be void or unenforceable, the remaining provisions of this
License shall remain in full force and effect. This License constitutes the entire License between the parties with respect to the use of the Software.

Should you have any questions concerning this Agreement, please write to:

Bertec Corporation, 6171 Huntley Road, Suite J, Columbus, Ohio 43229

Bertec Corporation Bertec Device Interface Library for .NET

iv

TABLE OF CONTENTS
Introduction __ 6

Definitions, Acronyms, and Abbreviations __ 7

Using the Library __ 8

Using polled data to pull the data yourself ___ 9

Using events to get the data pushed to you___ 9

Error checking and handling __ 10

Data processing __ 10

Data format ___ 10

Bertec Device Library Functions__ 11

BertecDevice __ 11

BertecDevice.Dispose() __ 11

BertecDevice.Status___ 12

BertecDevice.Start__ 12

BertecDevice.Stop __ 12

DataEventHandler delegate __ 12

BertecDevice.OnData ___ 12

StatusEventHandler delegate ___ 13

BertecDevice.OnStatus __ 13

DeviceSortEventHandler delegate ___ 13

BertecDevice. OnDeviceSort __ 13

BertecDevice.PollingBufferSize __ 14

BertecDevice.DataPoll___ 14

BertecDevice.ClearPollBuffer ___ 16

BertecDevice.AveragingSize __ 16

BertecDevice.LowpassFilterSamples__ 16

BertecDevice.ZeroNow __ 16

BertecDevice.EnableAutozero___ 16

BertecDevice.AutozeroState __ 17

BertecDevice.TransducerSerialNumber ___ 17

BertecDevice.TransducerStatus ___ 17

Bertec Corporation Bertec Device Interface Library for .NET

5

BertecDevice.AcquireRate __17

BertecDevice.UsbThreadPriority ___18

BertecDevice.MayBeMissingSyncCable __18

BertecDevice.ResetSyncCounters___18

BertecDevice.Transducers __18

BertecDevice.TransducerInfo class ___ 19

BertecDevice.TransducerInfo.ChannelCount __19

BertecDevice.TransducerInfo.ChannelNames ___19

BertecDevice.TransducerInfo.SamplingFreq __19

BertecDevice.TransducerInfo.SerialNumber __19

BertecDevice.TransducerInfo.Status __19

BertecDevice.TransducerInfo.Synchronized __20

BertecDevice.TransducerInfo.SynchMaster___20

BertecDevice.TransducerInfo.ZeroLevelNoiseValue __20

Troubleshooting __ 21

Document Revision History ___ 22

Bertec Corporation Bertec Device Interface Library for .NET

6

 INTRODUCTION
The Bertec Device Library for .NET provides the end-user developer or data acquisition expert a common and consistent method
to gather data from Bertec equipment. Instead of directly communicating with the USB devices and implementing different
protocols and calibrations for each, the Bertec Device Library for .NET manages all interaction with the USB devices, and
provides the calibrated captured data to your program or data analysis project. The Library also provides zeroing of the plate
data (either on-demand for tare loading, or automatic for low or no loading), sample averaging, and low-pass filtering.

The Library provides data results in either an event callback or a polled-data mode, depending on the needs and abilities of the
data acquisition application.

The Library exports its functionality as a typical .NET class library, which can be used by any .NET-compliant development
environment or data acquisition programs. As long as your development system or data acquisition software can use .NET class
libraries, then you should have no problems with using the Library.

The .NET class library is also COM-accessible, so it can be used from COM-based programs.

Sample code is provided in the BertecExampleNET.cs file.

If you are doing development in a C or C++ environment, please refer to the BertecDevice.pdf file.

If you are doing development using JAVA, please refer to the BertecDeviceJAVA.pdf file.

If you have any developmental questions on using this library or SDK, please contact Bertec Corporation for support.

Bertec Corporation Bertec Device Interface Library for .NET

7

DEFINITIONS, ACRONYMS, AND ABBREVIATIONS
Balance plate: a Bertec device that measures pressure and movement that is optimized for balance diagnostics.

Force plate: a Bertec device that measures pressure and movement.

Center of Pressure (CoP): The point on the surface of the platform through which the ground reaction force acts. It corresponds
to the projection of the subject’s center of gravity on the platform surface when the subject is motionless.

Bertec Corporation Bertec Device Interface Library for .NET

8

USING THE LIBRARY
After you have added a Reference to the BertecDeviceNET class library, getting data from an attached device generally consists
of just a few steps:

1. Create the BertecDevice object.
2. Either set the BertecDevice.PollingBufferSize value, or else bind your event handler to

BertecDevice.OnData
3. Call BertecDevice.Start
4. Poll using BertecDevice.DataPoll, or use the event hander.
5. Call BertecDevice.Stop
6. Dispose of the BertecDevice object.

Step 1: Create the BertecDevice object

Creating the BertecDevice object will set up internal data in the Library and locate attached Bertec USB devices. It is the
first thing you will need to do to use the Bertec Device Library, and the object itself is how to use to communicate with the
Bertec Device. Note that creating multiple instances of this object is not supported.

Step 2: Either set the BertecDevice.PollingBufferSize value, or else bind your event handler to
BertecDevice.OnData
Depending on how your application works, you will either want to poll for the data yourself (pulled by you) and process it, or
else use the faster event functionality (pushed to you). If polling, you will need to first tell the system how much internal buffer
memory it should allocate using the PollingBufferSize property. If using callbacks, you will need to register your event
handler with the Library via BertecDevice.OnData .

Step 3: Call BertecDevice.Start
To actually gather data, you must call BertecDevice.Start . Doing so will start the data gathering process, and will start
calling your event handler if you have registered it.

Step 4: Poll using BertecDevice.DataPoll, or use the event hander.

If you're using the data polling method, you will need to repeatably call BertecDevice.DataPoll to gather the data;
otherwise, the event handler will be used.

Step 5: Call BertecDevice.Stop
Once you have completed your data gathering call BertecDevice.Stop to end all of the USB data reads and end buffering
of the data. The Library still remains active and data gathering can be resumed by calling BertecDevice.Start again.

Step 6: Dispose of the BertecDevice object

Once you are completely done with the system, you will need to dispose of the BertecDevice object to stop all USB devices
and release the device driver memory. Failing to do so could result in the Bertec devices continually running, and possible
memory leaks.

Bertec Corporation Bertec Device Interface Library for .NET

9

USING POLLED DATA TO PULL THE DATA YOURSELF
In order to use polled data, you will need to inform the Library how much internal buffer space it will need to reserve for itself.
You do this using the BertecDevice.PollingBufferSize property, setting the time in seconds you wish it to buffer
for. If you don't do this, then calling BertecDevice.DataPoll will fail. Here is a very simplistic example with no error
handling:

 BertecDevice.PollingBufferSize = 2.750;
 BertecDevice.Start();
 int channelsOut;
 double[] yourDataBuffer=null;
 while (BertecDevice.DataPoll(ref channelsOut,ref yourDataBuffer) > 0)
 {
 samples = BertecDevice.DataPoll(ref channelsOut,ref yourDataBuffer);
 processYourData(...);
 }
 BertecDevice.Stop();

The BertecDevice.DataPoll function will return either the number data items placed into the buffer, up to the size of
the buffer, or else an error code.

The error codes are defined in the BertecDeviceNET.ErrorValue enum collection. See the section on Error Codes for
more information.

USING EVENTS TO GET THE DATA PUSHED TO YOU
Events are a very fast way to get data from the attached devices. These events are handled in a separate thread from your
application's main thread – this must be taken into consideration when designing your application.

To use events, simply register your class's event handler with BertecDevice.OnData. You can register multiple events
handlers, and they will each get called in turn. Here is a very simplistic example without error checking:

 class myHandlerClass
 {
 public void handleData(int samples, int channels, double[] data)
 {
 processYourData(...);
 }
 };
 myHandlerClass handler=new myHandlerClass();
 BertecDevice.OnData += new BertecDeviceNET.DataEventHandler(handler.handleData);
 BertecDevice.Start();

 ..your main program runs...

 BertecDevice.Stop();

Bertec Corporation Bertec Device Interface Library for .NET

10

ERROR CHECKING AND HANDLING
When using the data polling, you will need to check the return value from BertecDevice.DataPoll. If the value is
greater than zero, then there is valid data in the buffer object that you passed to BertecDevice.DataPoll. If the return
value is zero, there is no data on the wire to process – this is not considered an error unless it happens several times in a row,
and then the Library determines that the device has been disconnected. A value less than zero will indicate an error condition.
The error codes are defined in the BertecDeviceNET.ErrorValue enum collection. See the section on Error Codes for
more information.

When using the event handler, errors are given using the samples parameter. If this value is less than zero, it indicates an
error condition. Again, the error codes are defined in the BertecDeviceNET.ErrorValue enum collection. See the
section on Error Codes for more information.

Status errors are also sent using the BertecDevice.OnStatus event handler. These events are sent whenever the status
of the Library changes, either to an error condition or when cleared.

Generally speaking, the Bertec Device Library will automatically handle most error conditions that you would otherwise have to
design for. If the user unplugs a device, and then reconnects it, the Library will handle this and restart the device. However, the
system will not attempt to locate freshly attached devices that are plugged in while the DLL is in use. If the Bertec device is
turned off, or disconnected from the USB converter box, the DLL will notice the lack of incoming data and attempt to restart the
device once it is reconnected.

DATA PROCESSING
Since data can flow into the computer in a very rapid rate, it is critical that your program handle it as promptly as possible –
buffering it in a large pre-allocated memory block is preferred. Should data not be read fast enough, it will start to be lost, and
you will get notifications either through the return code from BertecDevice.DataPoll or the samples error value in
the callback.

DATA FORMAT
The buffered data that is presented via callbacks or data polling is an array of double values, already calibrated for each device,
grouped in sets of samples. What each value means is specific to the channel of that device. Each sample contains all channels
of all attached transducers, starting from BertecDevice.Transducers[0] and going up to the value in
BertecDevice.TransducerCount.

Each sample is therefor arranged like this:

sample 0: tr0ch0,tr0ch1,tr0ch2,tr0ch3, tr1ch0,tr1ch1

sample 1: tr0ch0,tr0ch1,tr0ch2,tr0ch3, tr1ch0,tr1ch1

etc.

Both the event handler and data poll return to your code the total number of channels for all transducers. In the above samples,
this value would be 6.

Bertec Corporation Bertec Device Interface Library for .NET

11

BERTEC DEVICE LIBRARY FUNCTIONS
The Bertec Device Library is in the BertecDeviceNET namespace. This namespace includes the following:

BertecDeviceNET.BertecDevice : this is the class you will need to instantiate in order to gain access to the Bertec
Devices. When done with this object, you will need to Dispose of it.

BertecDeviceNET.DataEventHandler : this is the event handler delegate for getting data from the system. Use this
to put the call to your own event handler into the BertecDevice.OnData event.

BertecDeviceNET.StatusEventHandler : this is the status change event handler delegate. Use this to put the call
to your own event handler into the BertecDevice.OnStatus event.

BertecDeviceNET.ErrorValue : enum list of error values.

BertecDeviceNET.AutoZeroStateValue : enum list of auto zeroing states.

BertecDeviceNET.TransducerInfo : information about each transducer in the TransducersList collection,
including the channel names.

BertecDeviceNET.TransducersList : a collection list of the attached transducers.

BERTECDEVICE
berecObject = new BertecDevice()

Creating the BertecDevice object initializes the library and does initial communication with the USB devices. You must first
create the object before you can use the Bertec Devices. Creating the object does not start the data gathering process – you
must call BertecDevice.Start() to do so. You should only create one instance of this object. Creating multiple instances
will cause errors with the USB device. When you are done with the object, destroy the object or call Dispose() on it to
release the memory.

BERTECDEVICE.DISPOSE()
void BertecDevice.Dispose()

Calling the BertecDevice.Dispose will shut down all devices, unregister all events, and stop data acquisition. You can
either do this explicitly by calling this method directly, wrapper your code block with using(bertecObject), or allow the
.NET garbage collection to take care of it. Failing to call this when you have completed data acquisition will leave the devices
running and possibly introduce memory leaks.

Bertec Corporation Bertec Device Interface Library for .NET

12

BERTECDEVICE.STATUS
int BertecDevice.Status

This property returns the current status value of the system. Use the ErrorValue enums to determine what the status is.

BERTECDEVICE.START
int BertecDevice.Start()

This function starts the data gathering process, invoking the events if they are registered, and buffering incoming data as
needed. The function will return a zero value if the process is started correctly, otherwise it will return an
ErrorValue.ERROR_INVALIDHANDLE return code.

BERTECDEVICE.STOP
int BertecDevice.Stop()

This function stops the data gathering process. Events will no longer be called (but remained registered), and calling the
DataPoll function will return an error. The function will return a zero value for success; otherwise it will return an
ErrorValue.ERROR_INVALIDHANDLE return code.

DATAEVENTHANDLER DELEGATE
BERTECDEVICE.ONDATA
delegate void DataEventHandler(int samples, int channels, double[] data)

event BertecDevice.OnData

To use the data event functionality in the system, you will need to register your event handler with
BertecDevice.OnData += new DataEventHandler(yourHandler). The system can support multiple data
event handlers. To stop using the event without stopping data acquisition, call BertecDevice.OnData -= new
DataEventHandler(yourHandler). Disposing of the BertecDevice object will automatically unregister all
callbacks.

Your event handler function should match the signature DataEventHandler delegate.

Events will be fired each time there is data left in the internal buffer to be processed – each event handler will be called with the
same data values. The data collection is an ArrayClass of doubles, and can be iterated like any other .NET collection. Do not
delete, free, or otherwise modify this data buffer.

Since data gathering is time-critical, it is important that you process the data as fast a possible and return.

You should register your events before calling BertecDevice.Start() in order to insure that no data is lost.

Bertec Corporation Bertec Device Interface Library for .NET

13

See the section on Returned Data for information about the format and type of the data block.

STATUSEVENTHANDLER DELEGATE
BERTECDEVICE.ONSTATUS
delegate void StatusEventHandler(int status)

event BertecDevice.OnStatus

To use the status callback functionality in the system, you will need to register your callback function with
BertecDevice.OnStatus += new StatusEventHandler(yourHandler). The system can support multiple
events handlers. To stop using the event, call BertecDevice.OnStatus -= new
StatusEventHandler(yourHandler). Disposing of the BertecDevice object will automatically unregister all
callbacks.

Your event handler function should match the signature StatusEventHandler delegate.

Events will be fired each time there is a change in the status of code of the Library – they will not be fired unless the status
value changes from N to X. The status value passed to the callback is the same as in the BertecDevice.Status value,
and is provided only as a convenience factor.

Since data gathering is time-critical, and this event is made in the context of the gathering process, it is important that you
process the status change as fast a possible and return.

DEVICESORTEVENTHANDLER DELEGATE
BERTECDEVICE.ONDEVICESORT
delegate void DeviceSortEventHandler(TransducersList[] infs, ref int orderArray[])

event BertecDevice.OnDeviceSort

To use the plate (or device) sort order callback functionality in the system, you will need to register your callback function with
BertecDevice.OnDeviceSort += new DeviceSortEventHandler(yourHandler). The system can
support multiple callbacks. To stop using the callback call BertecDevice.OnDeviceSort -= new
DeviceSortEventHandler(yourHandler). Disposing of the BertecDevice object will automatically unregister
all callbacks.

Your event handler function should match the signature DeviceSortEventHandler delegate.

The callbacks that are registered will be called each time the library reloads the list of devices attached to the computer.

The infs array is the list of devices discovered, and the orderArray should be manipulated by your callback to re-order which
device is #1, which is #2, etc. By default, the USB hardware orders the devices based on internal identifiers, which may or may
not be order you wish to have, and the orderArray is filled in with [0,1,2,3…] . By examining the infs array (typically the serial# of
the device), and changing the index values in orderArray, you can tell the library to move a device in front of others; the

Bertec Corporation Bertec Device Interface Library for .NET

14

ordering of devices is reflected in the outgoing data stream. This allows your project to always have a consistent ordering of
devices without the overhead of dealing with the USB system ordering.

BERTECDEVICE.POLLINGBUFFERSIZE
double BertecDevice.PollingBufferSize

To use data polling instead of events, you must first set up the internal buffer and tell the system how much data you wish to
buffer. The system will take the value (expressed in seconds – thus 1 second is 1.00) and create an internal buffer larger enough
to at least hold that amount for all channels. If you do not do this, then the data poll will return an error. You should set this
before calling BertecDevice.Start() and BertecDevice.DataPoll(). The allocated memory is released when
the BertecDevice is disposed of.

Note that setting this again will re-allocate the internal buffer, resulting in a loss of data remaining in the internal buffer.

BERTECDEVICE.DATAPOLL
int BertecDevice.DataPoll(ref int channelsOut, ref double[] dataOut)

Instead of using the event handlers, you can use the BertecDevice.DataPoll function to periodically pull the data
from the internal buffer set up with BertecDevice.PollingBufferSize. You must first have a buffer set up large
enough to hold at least once sample set of data, which is the sum of all the values of TransducersInfo.ChannelCount
in the TransducersList collection. This sum value is returned to you in the channelsOut variable that you provide to
the function.

You must call this function often enough, to keep up with the data being gathered and buffered by the system. Failing to do so
will result in an error condition and loss of data.

The function returns a positive number for how many sample “rows” are returned – each “row” is channelsOut wide. Thus
if the function returns 20, and you have 5 channels, then there are 100 data samples in the buffer. See the section on Returned
Data for information about the format and type of the data block.

If the function returns a negative number, it will be one of the following ErrorValue values:

Error Value Means

POLL_NOUSERBUFFER -1 The buffer size passed was too small to hold one sample. Increase
the size of the buffer.

POLL_NOPOLLBUFFER -2 There are no internal buffers allocated – you need to set
PollingBufferSize first.

Bertec Corporation Bertec Device Interface Library for .NET

15

POLL_CHECKSTATUS -3 A status change has occurred – either a device has been unplugged
or some other error occurred. You will need to check
BertecDevice.Status.

POLL_OVERFLOW -4 The polling wasn't performed for long enough, and data has been
lost.

POLL_NODEVICES -5 There are apparently no devices attached. Attach a device.

POLL_NOTSTARTED -6 You have not called BertecDevice.Start yet.

DATA_SYNCHRONIZING -7 Synchronizing, data not available yet (this value is in
BertecDevice.Status during callbacks, as the return code
when polling)

SYNCHRONIZE_LOST -8 If multiple plates are connected with the Bertec Sync option, the
plates have lost sync with each other - check the sync cable.

SEQUENCE_MISSED -9 One or more plates have missing data sequence - data may be invalid

SEQUENCE_REGAINED -10 The plates have regained their data sequence

NO_DATA_RECEIVED -11 No data is being received from the devices, check the cables

DEVICE_HAS_FAULTED -12 The device has failed in some manner. Power off the device, check all
connections, power back on

POLL_DEVICES_READY -50 There are plates to be read

AUTOZEROSTATE_WORKING -51 Currently finding the zero values

AUTOZEROSTATE_ZEROFOUND -52 The zero leveling value was found

Bertec Corporation Bertec Device Interface Library for .NET

16

BERTECDEVICE.CLEARPOLLBUFFER
int BertecDevice.ClearPollBuffer()

This will clear all of the data that is currently in the polling buffer. This is only useful if using DataPoll and not using event
handlers.

BERTECDEVICE.AVERAGINGSIZE
int BertecDevice.AveragingSize

This property controls the number of samples from the devices, reducing the apparent data rate and result data by the value of
AveragingSize (ex: a value of 5 will cause 5 times less data to come out). The AveragingSize value should be >= 2 in
order for averaging to be enabled. Setting AveragingSize to 1 or less will turn off averaging (the default).

BERTECDEVICE.LOWPASSFILTERSAMPLES
int BertecDevice.LowpassFilterSamples

This property controls setting a running average of the previous set value, making the input data stream to appear smoother.
The value should be >= 2 in order to turn the filter on. This does not affect the total number of samples gathered.

BERTECDEVICE.ZERONOW
int BertecDevice.ZeroNow()

By default, the data from the devices is not zeroed out. Calling the ZeroNow function with any load on the device will sample
the data for a fixed number of seconds, and then use the loaded values as the zero baseline (this is sometimes called “tare” for
simpler load plates). Calling this after calling Start will cause your data stream to rapidly change values as the new zero point
is taken. This can be used in conjunction with the EnableAutozero property.

BERTECDEVICE.ENABLEAUTOZERO
int BertecDevice.EnableAutozero

The Library has the ability to automatically re-zero the plate devices when it detects a low- or no-load condition (less than 40
newtons for at least 3.5 seconds). Setting this property to a non-zero value will cause the Library to monitor the data stream and
continually reset the zero baseline values. Set this property to a zero value to turn it off. This functionality will not interrupt your
data stream, but you will get a sudden shift in values as the Library applies the zero baseline initially.

Bertec Corporation Bertec Device Interface Library for .NET

17

BERTECDEVICE.AUTOZEROSTATE
int BertecDevice.AutozeroState

This property returns the current state of the autozero system. Your program will need to poll this on occasion to find the
current state – there is no event for when it changes.

The function returns one of the following AutoZeroStateValue values:

State Value Means

NOTENABLED 0 Autozeroing is currently not enabled.

WORKING 1 Autozero is currently looking for a sample to zero against.

ZEROFOUND 2 The zero level has been found. Note that once this value is returned, AutozeroState will
always return it until you disable Autozeroing.

BERTECDEVICE.TRANSDUCERSERIALNUMBER
String BertecDevice.TransducerSerialNumber[int index]

This property returns a given transducer's serial number. This is a convenience property that can be used instead of accessing
the TransducerInfo object.

BERTECDEVICE.TRANSDUCERSTATUS
int BertecDevice.TransducerStatus [int index]

This property returns a given transducer's current status. This is a convenience property that can be used instead of accessing
the TransducerInfo object. This value is always up-to-date, whereas the TransducerInfo object status value may not
be.

BERTECDEVICE.ACQUIRERATE
int BertecDevice.AcquireRate

The Library defaults to a data push rate of approximately 5Hz. On faster equipment that might be used in a near-realtime
environment, you can change this up to a rate of 20Hz (AcquireRate equals 1).

Bertec Corporation Bertec Device Interface Library for .NET

18

Note that this directly effects how often the data callback is given data, and how much data it is given. It does not effect how
the device is read, only how much is pushed to your application in the callback. This has no effect on the DataPoll function.
For example, at the default AcquireRate of 10, the data callback is called with about 240 samples every 210ms. Changing
this value to 2 causes the callback to be called with 52 samples every 47ms, and a value of 1 is equal to about 30 samples every
31ms. At the other extreme, a AcquireRate of 50 equates to 1025 samples at around 1016ms.

The number of samples and effective values of AcquireRate are dependent upon both the Bertec Device and the Windows
platform you are using.

There are very few conditions where you will need to change the rate.

BERTECDEVICE.USBTHREADPRIORITY
int BertecDevice.UsbThreadPriority

This write-only property allows your code to change the priority of the internal USB reading thread. Typically, this is not
something you will need to do unless you feel that the USB interface needs more or less of the thread scheduling that Windows
performs. The priority value can range from -15 (lowest possible) to 15 (highest possible – this will more than likely prevent you
GUI from running). The default system scheduling of the USB reading thread should be suitable for most applications.

BERTECDEVICE.MAYBEMISSINGSYNCCABLE
bool BertecDevice.MayBeMissingSyncCable

If there are multiple devices, this read-only property will attempt to detect if the sync cable is missing, disconnected, or loose.
Will return a value of 1 if the cable appears to be missing, or returns 0 if the sync cable appears to be good. Only valid when
used with multiple devices connected through 650x amps with a sync cable connection.

BERTECDEVICE.RESETSYNCCOUNTERS
int BertecDevice.ResetSyncCounters()

If there are multiple devices, this function will reset the internal counters that account for sync offset and drifts. This is an
advanced function that is typically not used and does nothing if there is only a single device connected. Returns 0 for success.

BERTECDEVICE.TRANSDUCERS
TransducerList BertecDevice.Transducers

This property returns an array of the Transducers that are currently connected to the system. Each entry into the array contains
information about each Transducer or Force Plate, such as channel names, serial #, and etc. See the section on the
TransducerInfo class for more information.

Bertec Corporation Bertec Device Interface Library for .NET

19

BERTECDEVICE.TRANSDUCERINFO CLASS
The TransducerInfo class contains information about each Transducer or Force Plate connected to the system. You get
the collection of Transducers by using the BertecDevice.getTransducers() function.

BERTECDEVICE.TRANSDUCERINFO.CHANNELCOUNT
int BertecDevice.TransducerInfo.ChannelCount

Contains how many output channels there are. For the name of each channel and the order they appear in the output stream,
see the ChannelNames property.

BERTECDEVICE.TRANSDUCERINFO.CHANNELNAMES
string[] BertecDevice.TransducerInfo.ChannelNames

Contains the names of each channel that the Transducer is delivering data on. The order of the names is the order of the data in
the data stream that you get via either callbacks or DataPoll.

BERTECDEVICE.TRANSDUCERINFO.SAMPLINGFREQ
int BertecDevice.TransducerInfo.SamplingFreq

The sampling frequency of the transducer, in Hertz. Typically, this is a value of 1000.

BERTECDEVICE.TRANSDUCERINFO.SERIALNUMBER
string BertecDevice.TransducerInfo.SerialNumber

The serial number of the device.

BERTECDEVICE.TRANSDUCERINFO.STATUS
int BertecDevice.TransducerInfo.Status

The last-known status of the device. This value is a “snapshot” in time, and for more up-to-date values, you should use the
BertecDevice.TransducerStatus[int deviceNumber] property.

Bertec Corporation Bertec Device Interface Library for .NET

20

BERTECDEVICE.TRANSDUCERINFO.SYNCHRONIZED
int BertecDevice.TransducerInfo.Synchronized

If set, then the device is part of a sync group. This requires the proper Bertec amplifiers connected together using a specific sync
cable. See also the TransducerInfo.SyncMaster property, and the BertecDevice.Syncronized and
BertecDevice.CurrentSyncDriftproperties.

BERTECDEVICE.TRANSDUCERINFO.SYNCHMASTER
int BertecDevice.TransducerInfo.SynchMaster

If set, then the device is the master control of the sync group. This requires the proper Bertec amplifiers connected together
using a specific sync cable. See also the TransducerInfo.Synchronized property, and the
BertecDevice.Syncronized and BertecDevice.CurrentSyncDrift properties.

BERTECDEVICE.TRANSDUCERINFO.ZEROLEVELNOISEVALUE
double BertecDevice.TransducerInfo.ZeroLevelNoiseValue[int channelIndex]

Returns the zero level noise value for a device and channel. Prior to accessing this property, either ZeroNow() must have
been called, or EnableAutozero must have been set. The value returned is a computed value that can be used for advanced
filtering. Valid values are always zero or positive; negative values indicate either no zeroing or some other error.

Bertec Corporation Bertec Device Interface Library for .NET

21

TROUBLESHOOTING
If your application will not launch, make sure that both the BertecDeviceDLL.dll and ftd2xx.dll are in the same folder as your
application, and that the BertecDeviceNET.dll has been registered with your development system or install deployment solution.

For any other issues, please contact Bertec Technical Support.

Bertec Corporation Bertec Device Interface Library for .NET

22

DOCUMENT REVISION HISTORY

Date Revision Description Author
01/15/2009 1.00 Initial Revision Todd Wilson
03/28/2012 1.80 Updated with current version Todd Wilson
06/30/2012 1.81 Removed Sync Drift function; added Sync Cable

and Sync Counter Reset functions and additional
status codes.

Todd Wilson

3/24/2014 1.82 Added sort ordering, usb thread priority
functions, corrected typographical errors

Todd Wilson

